home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDSSSSTTTTEEEEDDDDCCCC((((3333SSSS)))) DDDDSSSSTTTTEEEEDDDDCCCC((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- DSTEDC - compute all eigenvalues and, optionally, eigenvectors of a
- symmetric tridiagonal matrix using the divide and conquer method
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
- INFO )
-
- CHARACTER COMPZ
-
- INTEGER INFO, LDZ, LIWORK, LWORK, N
-
- INTEGER IWORK( * )
-
- DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
- symmetric tridiagonal matrix using the divide and conquer method. The
- eigenvectors of a full or band real symmetric matrix can also be found if
- DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
- tridiagonal form.
-
- This code makes very mild assumptions about floating point arithmetic. It
- will work on machines with a guard digit in add/subtract, or on those
- binary machines without guard digits which subtract like the Cray X-MP,
- Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on
- hexadecimal or decimal machines without guard digits, but we know of
- none. See DLAED3 for details.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- COMPZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only.
- = 'I': Compute eigenvectors of tridiagonal matrix also.
- = 'V': Compute eigenvectors of original dense symmetric matrix
- also. On entry, Z contains the orthogonal matrix used to reduce
- the original matrix to tridiagonal form.
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDSSSSTTTTEEEEDDDDCCCC((((3333SSSS)))) DDDDSSSSTTTTEEEEDDDDCCCC((((3333SSSS))))
-
-
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the diagonal elements of the tridiagonal matrix. On
- exit, if INFO = 0, the eigenvalues in ascending order.
-
- E (input/output) DOUBLE PRECISION array, dimension (N-1)
- On entry, the subdiagonal elements of the tridiagonal matrix. On
- exit, E has been destroyed.
-
- Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
- On entry, if COMPZ = 'V', then Z contains the orthogonal matrix
- used in the reduction to tridiagonal form. On exit, if INFO = 0,
- then if COMPZ = 'V', Z contains the orthonormal eigenvectors of
- the original symmetric matrix, and if COMPZ = 'I', Z contains the
- orthonormal eigenvectors of the symmetric tridiagonal matrix. If
- COMPZ = 'N', then Z is not referenced.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1. If eigenvectors
- are desired, then LDZ >= max(1,N).
-
- WORK (workspace/output) DOUBLE PRECISION array,
- dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the
- optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. If COMPZ = 'N' or N <= 1 then
- LWORK must be at least 1. If COMPZ = 'V' and N > 1 then LWORK
- must be at least ( 1 + 3*N + 2*N*lg N + 3*N**2 ), where lg( N ) =
- smallest integer k such that 2**k >= N. If COMPZ = 'I' and N > 1
- then LWORK must be at least ( 1 + 4*N + N**2 ).
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns this
- value as the first entry of the WORK array, and no error message
- related to LWORK is issued by XERBLA.
-
- IWORK (workspace/output) INTEGER array, dimension (LIWORK)
- On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
-
- LIWORK (input) INTEGER
- The dimension of the array IWORK. If COMPZ = 'N' or N <= 1 then
- LIWORK must be at least 1. If COMPZ = 'V' and N > 1 then LIWORK
- must be at least ( 6 + 6*N + 5*N*lg N ). If COMPZ = 'I' and N >
- 1 then LIWORK must be at least ( 3 + 5*N ).
-
- If LIWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the IWORK array, returns this
- value as the first entry of the IWORK array, and no error message
- related to LIWORK is issued by XERBLA.
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- DDDDSSSSTTTTEEEEDDDDCCCC((((3333SSSS)))) DDDDSSSSTTTTEEEEDDDDCCCC((((3333SSSS))))
-
-
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an eigenvalue while working
- on the submatrix lying in rows and columns INFO/(N+1) through
- mod(INFO,N+1).
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
- Modified by Francoise Tisseur, University of Tennessee.
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-